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We present an efficient generalization of the k-space interpolation scheme for electronic structure presented
by Shirley �Phys. Rev. B 54, 16464 �1996��. The method permits the construction of a compact k-dependent
Hamiltonian using a numerically optimal basis derived from a coarse-grained set of effective single-particle
electronic-structure calculations �based on density-functional theory in this work�. We provide some generali-
zations of the initial approach which reduce the number of required initial electronic-structure calculations,
enabling accurate interpolation over the entire Brillouin zone based on calculations at the zone center only for
large systems. We also generalize the representation of nonlocal Hamiltonians, leading to a more efficient
implementation which permits the use of both norm-conserving and ultrasoft pseudopotentials in the input
calculations. Numerically interpolated electronic eigenvalues with accuracy that is within 0.01 eV can be
produced at very little computational cost. Furthermore, accurate eigenfunctions—expressed in the optimal
basis—provide easy access to useful matrix elements for simulating spectroscopy and we provide details for
computing optical transition amplitudes. The approach is also applicable to other theoretical frameworks such
as the Dyson equation for quasiparticle excitations or the Bethe-Salpeter equation for optical responses.
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I. INTRODUCTION

Providing efficient access to accurate electronic structure
is vital to accelerating research in materials science and
condensed-matter physics. This can be achieved directly by
increasing the availability of computational resources, by de-
veloping faster numerical methods or by switching to more
compact numerical representations. However, if one adheres
to existing methods and representations, one might reason-
ably ask if more information can be extracted efficiently
from such approaches. In this work, we outline an efficient
approach to extracting detailed information on electronic
structure for arbitrary electron wave vector k. This method
applies not only to periodic systems—where k is well
defined—but also to models of aperiodic systems within the
supercell approach.1 For example, periodic calculations are
often used to simulate isolated molecules in large supercells
and disordered condensed phases are commonly modeled us-
ing a supercell of sufficient size to contain relevant structural
features. Providing efficient access to first-principles elec-
tronic band structure and matrix elements over the entire
Brillouin zone �BZ� supports a wide range of research topics
from Fermi-surface exploration in superconducting materials
to detailed simulated spectroscopy of dispersive bands or
high-energy excitations.

In 1996, Shirley2 outlined an approach within effective
single-particle electronic structure for constructing an opti-
mal basis which spans the BZ and can be used to build a
compact k-dependent Hamiltonian based on some coarse-
grained reference calculations. He applied this approach in
detailed explorations of the dispersion and spectroscopy of
crystalline systems: silicon, germanium, graphite, hexagonal

boron nitride, lithium fluoride, and calcium fluoride. The ef-
ficacy of his approach was tested by examination of electron
band structures, densities of states, dielectric properties,
x-ray resonance fluorescence and incoherent emission spec-
tra, and photoelectron spectroscopy, with details provided or
referenced in Ref. 2. He also used this basis in developing
efficient approaches to Bethe-Salpeter calculations for
valence-band3 and core-level spectroscopy.4 To our knowl-
edge, this advantageous approach has not been widely ap-
plied outside of Shirley’s research.

In this work, we outline a generalized implementation of
Shirley’s interpolation scheme, which has been incorporated
as a postprocessing tool for use with the QUANTUM-ESPRESSO

�Ref. 5� open-source electronic-structure package. Specifi-
cally, our approach improves upon that of Shirley in two
ways. �1� Generation of the optimal basis for the compact
Hamiltonian requires significantly less coarse-grained
electronic-structure input due to imposing a phase constraint
on the basis. �2� The compact k-dependent Hamiltonian is
more efficiently constructed and evaluated by choosing to
interpolate the nonlocal projectors rather than the full nonlo-
cal potential, with the further advantage that this enables a
generalization of the original approach capable of exploiting
the ultrasoft pseudopotential formalism.6 We hope that the
outline provided here indicates how easily Shirley interpola-
tion might be implemented in other electronic-structure
codes. Furthermore, we illustrate that the advantages of such
an approach are clear when applied to large supercell calcu-
lations, where zone-center electronic-structure calculations
are sufficient to accurately reproduce the electronic structure
throughout the BZ. This particular implementation has al-
ready been used in simulating x-ray absorption spectra of
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molecules in vacuo7,8 and in solution.9

Another commonly used interpolation scheme for elec-
tronic structure exploits maximally localized Wannier
functions.10 This approach builds a set of Wannier functions
to describe a band complex and minimizes their spread in
real space. The resulting functions can be quite localized and
enable the calculation of first-principles tight-binding param-
eters for use in calculations of Berry’s phase polarization,11,12

electron transport,13 anomalous Hall conductivity,14 electron-
phonon coupling,15,16 and much more. The Shirley interpola-
tion method does not produce spatially localized functions.
However, for interpolation purposes, we show that it is much
more automatic to use and computationally less expensive in
terms of required input calculations. Also, conduction-band
states may be generated as easily as valence-band states. In
particular, there are no intrinsic difficulties in treating metal-
lic systems and no specific requirements for disentanglement
of dispersive bands.17

This paper is organized as follows. In Sec. II we provide
a summary of the work outlined in Ref. 2. In Secs. III and IV
we focus on the advances in our particular implementation
over the original work. Section V focuses on some applica-
tions which highlight the advantages of the approach. Sec-
tion VI differentiates Shirley interpolation from Wannier in-
terpolation. Finally, in Sec. VII we provide some potential
applications of this approach and then summarize our con-
clusions in Sec. VIII.

II. BACKGROUND TO THE METHOD

A brief summary of Shirley’s approach is provided here to
establish the context of our own work. The process of build-
ing a compact k-dependent Hamiltonian in the optimal basis
for Brillouin zone sampling is outlined in Fig. 1. We assume
an effective single-particle Hamiltonian �based on Kohn-
Sham density-functional theory �DFT� �Refs. 18 and 19� in
this work�. A self-consistent charge density is generated by
sufficient sampling of the Brillouin zone. Then, if necessary,
a set of states is calculated from this density for a user-
specified set of band indices and k points. The periodic parts
of these Bloch states are extracted and used to construct an
overlap matrix which is then diagonalized to isolate linear
dependence in this basis of periodic functions. By ordering
the overlap eigenvalues by decreasing magnitude, we may
select the optimal basis subject to a user-defined tolerance. In
our approach we truncate the basis by specifying a tolerance
� for the neglected fraction of the trace of the overlap.

Since we have removed the plane-wave envelope func-
tions from the Bloch states, a k-dependent Hamiltonian is
required, and we represent this Hamiltonian H�k� in the op-
timal basis. Each component of the Hamiltonian is expanded
as a polynomial in k. The kinetic energy has an analytic
quadratic form, as indicated in Fig. 1. Specifically, with ac-
cess to the Fourier coefficients of the optimal basis functions
Bi�G�, if one expands the k-dependent kinetic-energy opera-
tor, one obtains

�Bi�e−ik·r�−
1

2
�2�eik·r�Bj	

=
1

2
k2�ij + 2k · �
G

Bi�G��GBj�G�

+ �
G

Bi�G��G2Bj�G��



1

2
�k2�ij + k · Kij

�1� + Kij
�0�� .

The local potential is constant with respect to k and its
matrix elements are efficiently computed within a plane-
wave code using Fast Fourier Transforms. The nonlocal po-
tential requires fitting on a grid in k space. In Shirley’s
implementation,2 k-dependent matrix elements of the nonlo-
cal potential operator were evaluated at points on a uniform
Cartesian grid which contained the entire first Brillouin zone
and these were fitted to polynomials in k to enable interpo-
lation between the points. Explicit expressions for each term
in the Hamiltonian were provided in the original work.

The outcome of these steps is a set of coefficients which
can be used to construct the matrix H�k� for any k and then
diagonalize it to produce the eigenvectors and eigenvalues in
good agreement with an equivalent solution to the underly-
ing Hamiltonian at the same k point. The advantage of Shir-
ley’s approach is that one reduces the size of the problem to
be solved �i.e., the dimension of H� such that detailed explo-
rations of the eigenspectrum become tractable. For instance,
one could expect to switch from thousands of plane waves to
perhaps tens of optimal basis functions, thereby reducing a

FIG. 1. The steps involved in building the compact k-dependent
Hamiltonian in the optimal basis, beginning �top� with a self-
consistent charge density, from which states are generated for a
range of bands and k points. An overlap matrix is constructed from
the periodic parts of these Bloch states and diagonalized. The opti-
mal basis is chosen as those eigenvectors of the overlap matrix
�ordered by eigenvalue magnitude� which span a user-defined frac-
tion of the space defined by the input states. The k-dependent
Hamiltonian is constructed in this basis from its various parts: ki-
netic energy, local potential, and nonlocal potential.
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tough iterative �most likely parallelized� diagonalization to a
trivial direct diagonalization which can be solved efficiently
on a single processor. Shirley’s satisfaction with the efficacy
of this approach is clear in his original paper and also from
the large number of detailed spectroscopic simulations en-
abled by it.

III. MORE EFFICIENT ROUTES TO THE OPTIMAL
BASIS

A. Choice of k points for the optimal basis

The original scheme outlined particular uniform Cartesian
grids in k space at which eigensolutions were generated us-
ing the DFT code of choice and provided as input to con-
struct the optimal basis by diagonalization of their overlap
matrix. Henceforth, we shall refer to these DFT eigensolu-
tions as “input states” and the k-space grid on which they are
calculated as the “input grid.” In general, the input grid need
not coincide with that used in the original self-consistent
DFT calculation, which generated the self-consistent charge
density, and the range of band indices for a given application
may also differ, particularly when exploring the unoccupied
spectrum. Therefore, the input states are often generated di-
rectly as solutions to the Kohn-Sham equations for a fixed
self-consistent field. In the original work, the input grids con-
tained the entire first Brillouin zone, with the aim of repro-
ducing the eigensolutions at all points in that zone. It was not
clear from the original work how the final accuracy would be
affected by particular choices of such coarse input grids. Fur-
thermore, the choice of input grid varied with lattice symme-
try due to the differences in the shape of the first Brillouin
zone in Cartesian space. In this work, we instead present a
more general and automatic approach to sampling k space
based on uniform grids in reciprocal lattice space, spanning
the unit cube �0,1�3. This means that for any lattice symme-
try, the input grid of k points may be characterized uniquely
by three integers n1�n2�n3, much like a typical electronic-

structure calculation. Furthermore, one can be sure that this
grid spans the volume of the Brillouin zone. In the original
scheme, the use of a Cartesian input grid leads to the inclu-
sion of some k points lying outside the zone boundary for
nonorthorhombic cells.

B. Building in periodicity with respect to k

As stated by Shirley, the k-dependent Hamiltonian does
not impose periodicity in k space, and so, one must be care-
ful regarding the k points one passes to the Hamiltonian for
diagonalization. We illustrate this point in Fig. 2 by examin-
ing the band structure of bcc Na along the � line connecting
the � and H points, with extension to the 2H point, which is
equivalent to �. We chose Na since its electronic structure is
well described at the DFT level using a local pseudopoten-
tial, thereby removing any complications associated with in-
terpolating the nonlocal potential. In this calculation, we em-
ployed a norm-conserving pseudopotential and a 30 Ry
kinetic-energy cutoff. The interpolated band structure is
clearly dependent on the choice of input k points used to
generate the basis. Using the � point alone �Fig. 2�a�� results
in accurate electronic bands at that point, but large errors as
one follows the � line. Most notably, the periodic image of
the zone center, 2H, is completely wrong, which emphasizes
that we have no explicit periodic boundary condition in our
k-dependent Hamiltonian. Inclusion of the zone-boundary H
point �Fig. 2�b�� leads to marked improvement in accuracy
along � but leads to some inaccuracy once we leave the
zone-centered first Brillouin zone—again the 2H point is not
reproduced. However, the ability to obtain excellent agree-
ment in band structure between the input grid points natu-
rally prompts one to continue adding points to enable repro-
ducibility over a larger region of k space. Explicitly adding
the 2H point �Fig. 2�c�� does indeed almost restore the cor-
rect symmetry of the band structure, albeit only in the neigh-
borhood of this �� ,2H� interval—we should expect no re-
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FIG. 2. Accuracy in reproducing the band structure of bcc Na with respect to choice of input k-point grid. Band energies are reported in
electron volt with respect to the Fermi level and k points follow the � line from the zone center ��� to one of the zone boundaries �H� and
beyond to a periodic image of the zone center �2H�. DFT �Shirley interpolated� band structure is indicated by light solid �dark dashed� lines.
The size of the input k-point grid is varied: �a� � only; �b� � and H; �c� �, H, and 2H; and �d� � together with its seven periodic images from
the corners of the unit cube �0,1�3.
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producibility outside this interval. At this point, one can
appreciate Shirley’s original Brillouin zone spanning choice
of input grids, as they guarantee accurate reproducibility of
band structure throughout the zone. However, for cases
where certain high-symmetry points are not included in the
input grid, inaccuracies may appear.

We have observed that the input grid does not define a
“fit” in the usual sense of interpolation, with reproducibility
decreasing in accuracy as one explores points farther away
�in the Cartesian sense� from the grid points. In fact, when
we include the H point, we notice that the entire � line is
accurately reproduced. Furthermore, if we were to include �
and its periodic image 2H alone, we would see reasonable
reproducibility across the entire � line. Clearly, it seems that
there is sufficient k dependence built into H�k� to accurately
describe the full zone, once we provide additional constraints
on the symmetry via the input states. This is equivalent to a
phase constraint for the optimal basis, as we shall see next
section. And so, in our implementation we provide input
grids chosen uniformly from the unit cube, including all cor-
ners of the cube. We furthermore impose periodicity on k
points requested for diagonalization by mapping them first to
the unit cube �in reciprocal lattice coordinates�, since we
have no guarantee of accuracy outside the three-dimensional
interval �0,1�3.

C. Accurate interpolation using just the � point

If we choose our input grid from the unit cube, it seems
clear now that we should include all corners of the cube—�
and its seven periodic images in three dimensions. Always
wanting to reduce computational effort, we immediately see
that the input states originating from these periodic images
differ only in phase from those at �. Furthermore, we will
see that, for large supercells �small Brillouin zones�, it is
sufficient, using a DFT calculation, to generate input states at
� only, generating periodic images of these states at the cor-
ners of the unit cube in a small number of steps. Figure 2�d�
illustrates how well this approach works for bcc Na. The
resulting band structure is indistinguishable �by eyes� from
the original. The root-mean-square error along the indicated
path is 5.5 meV. We may reduce this error by including more
input k points. However, we note that this error will not tend
to zero, since it is comparable to the error associated with
changing the kinetic-energy cutoff and is related to a slight
inconsistency in the number of plane waves between peri-
odic functions from different k points �as noted by Shirley�.
In our implementation, we retain all wave vectors G, such
that 1

2 �k+G�2�Ecut, padding with zeros the coefficients of
those functions with missing G. Note that numerical differ-
ences related to this effect reduce in magnitude for larger
cutoffs, but in essence they are inconsequential, given that
the original DFT calculated eigenvalues would change as
much upon varying Ecut. Generally, for large supercells we
find that �-point sampling is adequate to reproduce all of the
band structure with an accuracy that is within 10 meV.

To reduce the cost of the input DFT calculation, we con-
struct the periodic images of the input states. The transfor-
mation of a given periodic function unk to unk+G0

is easy to

obtain in plane-wave representations. Since periodicity im-
plies that

unk�r�eik·r = unk+G0
�r�ei�k+Go�r,

e−iG0·runk�r� = unk+G0
�r�

then, expanding in Fourier coefficients, we have

�
G

cnk�G�ei�G−G0�r = �
G

cnk+G0
�G�eiG·r,

which implies that the Fourier coefficients are ultimately re-
ordered according to cnk�G+G0�=cnk+G0

�G�.
For applications to large systems, where wave functions

are necessarily distributed over many processors, such reor-
dering may be complicated to implement. In this case, a
simpler, albeit less efficient approach, is to exploit the native
implementation of the Fourier transform to make such a
transformation. Suppose that we start with the wave func-
tions in Fourier space. Then we follow this map

cnk�G� → unk�r�
↓

cnk+G0
�G� ← e−iG0·runk�r�

,

where we first back transform to real space, then multiply by
the function e−iGo·r for each r, and then Fourier transform
again to reciprocal space.

Note that for cases where the � point alone is insufficient,
this scheme could also be generalized to expand input states
to the star of a given input k point by employing the little
group of that k point as determined by the lattice and atomic
basis symmetry.

IV. GENERALIZATION OF THE NONLOCAL POTENTIAL

A. Generalized Kleinman-Bylander form

At this point we choose an advantageous deviation from
the original implementation.2 The k-dependent nonlocal po-
tential is arbitrarily complex with respect to k. Previously,
Shirley expanded the entire operator in the optimal basis on
a coarse grid in k space and then interpolated between these
values using a polynomial expansion. This was probably the
most complex component of the original approach with re-
spect to implementation. Details were provided for a quartic
interpolation based on a 5�5�5 grid, however, the gener-
alization to different grids and the relative importance of
such effort was left to the judgement of the reader for spe-
cific examples. Storage of the ultimate parametrization of the
nonlocal potential is proportional to the grid size and the
square of the number of basis functions. In this work, we
take a slightly different approach, which we will show to be
more compact in many cases and more powerful in terms of
deriving spectroscopic information.

We assume a generalized, separable, Kleinmann-
Bylander20 form for the nonlocal potential

DAVID PRENDERGAST AND STEVEN G. LOUIE PHYSICAL REVIEW B 80, 235126 �2009�

235126-4



VNL = �
���

�	�	D����	��� . �1�

This is most reminiscent of Vanderbilt’s ultrasoft
pseudopotentials.6 Note that for norm-conserving pseudopo-
tentials D��� is diagonal. The composite index �
= �I ,n , l ,m� refers to the site I of a particular ion and its
associated atomic quantum numbers. Expanding the
k-dependent version of this operator in the optimal basis, we
find that the k dependence is limited to the projectors

Vij
NL�k� = �

���

	�i�k��D���	��j�k� , �2�

where

	�i�k� = �	��eik·r�Bi	 .

So, we may consider interpolating only the projector ma-
trix elements on a grid in k space. The k-dependent projec-
tors are quite efficiently evaluated by one-dimensional Fou-
rier transform of their radial component and should be
obtainable from the original electronic-structure code. In or-
der to make our implementation general, we employ three-
dimensional B-spline interpolation21,22 on a uniform n1�n2
�n3 grid of k points in crystal coordinates, that is, chosen
from the unit cube, �0,1�3. Requests for evaluations of the
nonlocal projectors at k points outside the unit cube assume
periodicity in k space. In general, we use a larger k-point grid
to interpolate the projectors than we use for generating the
optimal basis. A good rule of thumb is to use a grid at least
twice as dense. We note that for systems with d electrons we
have used more dense grids. We also avoid spurious interpo-
lation by limiting the order of the B splines to be equal to the
number of grid points in each dimension. Note that for an
n1�n2�n3 grid, each dimension is actually expanded by
one to include the edges of the unit cell.

Note that by interpolating the projectors, one must con-
struct the full nonlocal potential for each k by matrix multi-
plication. This apparent additional cost is not that great, con-
sidering that for norm-conserving pseudopotentials D��� is
diagonal, and even for ultrasoft pseudopotentials D��� is
block diagonal. This specific choice for interpolation can re-
duce the required storage for the nonlocal potential by the
ratio of the number of projectors to the number of basis
functions, which for many applications is a reduction on the
order of hundreds, given that there may be typically 100
basis functions per atom, but likely less than ten projectors.

B. Extension to ultrasoft pseudopotentials

The extension of the original approach to ultrasoft
pseudopotentials is now trivial. Ultrasoft pseudopotentials
relax the norm-conservation condition, by introducing a cor-
rection derived from atomic all electron and pseudowaves

Q�,���r� = 
��r��
���r� − ���r������r� ,

Q�,�� = �
��
��	 − �������	 ,

where 
 ,� refer to all-electron and pseudowaves, respec-
tively. This correction appears in the coefficients that define
the nonlocal potential

D�,�� = D�,��
ion + D�,��

Hxc ,

where the first term is a constant for each atomic species,
while the second term involves an integral of Q�,���r� over
the density-dependent Hartree plus exchange-correlation
potential.6

Furthermore, we must remember that the use of ultrasoft
pseudopotentials introduces a generalized orthonormality
condition on the eigensolutions

�nk�S�mk	 = �nm,

which implies that their periodic components are solutions to
the following generalized eigenproblem:

�H�k� − �nkS�k���unk	 = 0.

The k-dependent overlap matrix in the optimal basis is
defined to be

Sij�k� = �
�,��

	�i�k��Q�,��	�k�

and the projectors matrix elements 	�i�k� are identical with
those used in the nonlocal potential. Note that this introduces
a large storage and computational saving: we need only in-
terpolate the projector matrix elements once, and then we
can construct both the nonlocal potential and overlap matrix
by multiplication.

In summary, the generalization to ultrasoft pseudopoten-
tials has the following additional requirements for construc-
tion of the k-dependent Hamiltonian: �1� access to the self-
consistent coefficients D�,��

Hxc at the end of the self-consistent-
field calculation and �2� access to the Q�,�� coefficients
available in the pseudopotential definitions. Subsequently, at
any k point, one must find the solution of a generalized
eigenproblem with both H�k� and S�k� constructed by inter-
polation.

C. Advantages for spectroscopy

One of the most common matrix elements used for optical
spectroscopy is that of the velocity operator. However, for
nonlocal Hamiltonians, its evaluation is nontrivial, involving
a commutator of the position operator and the nonlocal
potential.23–27 Several approaches have been introduced to
include or overcome this complication. For instance, rather
than evaluating matrix elements of velocity in the transverse
gauge, one can equivalently evaluate plane-wave matrix ele-
ments in the longitudinal gauge, exploiting the Heisenberg
equation of motion

�nk�q̂ · v�mk	 = lim
q→0

��mk+q − �nk�
q

�nk�e−iq·r�mk + q	 ,

where q̂ is the polarization of the incident electric field. Sub-
stitution of the commutator �e−iq·r ,H� in this expression leads
to the following identity:
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�nk�q̂ · v�mk	 = lim
q→0

�unk�
H�k + q� − H�k�

q
�umk+q	

= �unk�q̂
dH�k�

dk
�umk	 .

One advantage of our current implementation is the abil-
ity to evaluate derivatives of H�k� with respect to k. The
kinetic-energy operator is readily differentiable, while the
B-spline routines we adopted also include efficient evalua-
tion of derivatives.22 Therefore, very little extra work is re-
quired to access optical transition amplitudes. Beyond first
derivatives, one can see that accurate effective masses are
easily attainable through the second derivatives and would
be extremely efficient for large periodic nanostructures, ob-
viating the need for numerical differentiation based on mul-
tiple costly k point calculations.

V. APPLICATIONS

Previous work has shown the efficacy of Shirley interpo-
lation in reproducing the band structure of crystalline solids
with small unit cells �1–4 atoms�. Here, we will focus on
systems with larger unit cells and systems of reduced peri-
odicity which are commonly simulated within large, but
mostly empty, supercells. In these cases, the efficiency of
Shirley’s approach is clearly competitive with the usual
plane-wave calculations, while retaining the accuracy of self-
consistent results.

A. Large systems using only the � point

Periodic systems with small �1–4 atom� primitive cells
generally require electronic structure from some coarse sam-
pling of the Brillouin zone as a starting point in generating
the optimal basis of the Shirley interpolation scheme—
usually a 2�2�2 k-point grid suffices. However, as the
system size grows beyond four atoms and as the volume of
the associated Brillouin decreases, we find that the necessary
coarse sampling reduces to just one k point: the zone-center
�. Using the simple and efficient scheme to generate the
seven periodic images of � at the corners of the unit cube
�Sec. III C� we generally have sufficient information to gen-
erate an accurate interpolation for such systems. We choose
� brass as an example of a crystalline solid with a complex
�26-atom� primitive cell �Fig. 3�. While this example is not
very large in the sense of what is capable using standard
DFT calculations, it does illustrate the gains in efficiency that
are possible for systems where the number of plane-wave
basis functions starts to define the computational cost. This
example also shows how our implementation can accurately
reproduce the band structure using plane-wave electronic-
structure information from the zone center alone—something
which was not possible using the original approach. Further-
more, this validates our generalization to incorporate ultra-
soft pseudopotentials within the Shirley interpolation
scheme.

We generate the self-consistent field using a shifted 4
�4�4 k-point grid within DFT using ultrasoft pseudopoten-
tials for Cu and Zn, a plane-wave cutoff of 25 Ry and a

charge-density cutoff of 200 Ry. The basis is built using 200
input states calculated at the � point, which are then ex-
panded to include the seven images of the � point at the
corners of the reciprocal space unit cube. The optimal basis
is obtained by diagonalizing the overlap matrix and truncat-
ing to 1095 functions from a possible 1600, corresponding to
�42 basis functions per atom. The nonlocal potential is in-
terpolated on a 3�3�3 grid. The nondispersive d bands of
Cu and Zn require this level sampling in order to accurately
reproduce the nonlocal potential. The resulting band struc-
ture is shown in Figs. 4 and 5. Comparison with DFT calcu-
lations throughout the Brillouin zone indicates remarkable
accuracy �root-mean-square deviation of 2 meV� for the in-
terpolated band structure, with all bands of all character
�s , p ,d� reproduced to the same degree. We can efficiently
refine a non-self-consistent estimate of the Fermi level using
Shirley interpolation, and we find it to be shifted from that of
our initial self-consistent-field plane-wave calculation by 0.3
eV. This is a good illustration of the importance of detailed
k-point sampling in metals. Shirley interpolation provides an
efficient route to obtaining a more accurate estimate of the
Fermi level for a given self-consistent field and indicates the
possibility of using this interpolation scheme to efficiently
refine self-consistent-field calculations for metallic systems.

B. Efficiency in vacuo

When using plane waves in supercell simulations of re-
duced dimensional systems, the inclusion of large vacuum
regions comes at a significant computational cost. The use of
Shirley interpolation can reduce this cost dramatically. We
use graphene as an example, where we simulate this two-
dimensional sheet of carbon atoms in a three-dimensional
supercell with a large separation between periodic images

FIG. 3. �Color online� The atomic structure of � brass
�Cu5Zn8�.
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defined by the c axis. Specifically we model graphene using
two carbon atoms in a hexagonal primitive cell. In the limit
that the length of the c axis approaches that of graphite, our
system would correspond to the AA-stacked phase. All cal-
culations were performed using norm-conserving pseudopo-
tentials and a plane-wave cutoff of 60 Ry. For this system,
we use a 2�2�2 k-point grid as input to generate the opti-
mal basis. This is further augmented to a 3�3�3 grid by
inclusion of periodic images within the unit cube in recipro-
cal lattice space. The resulting optimal basis generates elec-
tronic band structure with an accuracy within 0.0011 eV
�0.0013 eV� for a c axis of 10 Å �20 Å� with respect to
plane-wave calculations.

We notice that increasing c results in a large increase in
the number of plane waves in this dimension, but has only a
small impact on the number of optimal basis functions used
to construct the Shirley Hamiltonian. Table I clearly illus-
trates the efficiency of the Shirley approach for k-point sam-
pling. In this small example we see speed ups of greater than
3000. Furthermore, the increase in computational effort that
we expect when adding to the vacuum spacing is practically
absent from the interpolated case where the number of basis
functions increase only slightly, rather than the linear in-
crease for plane waves.

VI. COMPARISON WITH WANNIER INTERPOLATION

In the last decade, the use of maximally localized Wannier
functions �MLWFs� has emerged as an extremely efficient

and physically appealing route to interpolating electronic
band structure and deriving useful tight-binding parameters
from first-principles Hamiltonians.10,14,15,28 The approach
generates Wannier functions within a gauge which minimizes
their spatial extent. In this sense, one constructs a set of basis
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FIG. 4. The electron band structure of � brass �Cu5Zn8� gener-
ated using plane-wave DFT calculations �dots� and using Shirley
interpolation based solely on DFT wave functions generated at the
� point �lines�. The root-mean-square deviation of the Shirley in-
terpolated values is 2 meV. The light �heavy� horizontal line indi-
cates the Fermi level resulting from a 4�4�4 k-point plane-wave
DFT calculation �10�10�10 k-point Shirley interpolation�.
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FIG. 5. Details of the band structure of � brass in three energy
regions: �a� the Zn d bands; �b� the Cu d bands; and �c� high in the
conduction bands. DFT plane-wave calculations are indicated by
dots. Shirley interpolated bands are shown as lines. Together with
Fig. 4 this indicates the ability of Shirley interpolation to accurately
reproduce the bands of metallic states of varying character with
minimal effort ��-point calculations only�.
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functions localized in real space, with one MLWF per band.
The procedure is similar to that outlined in Fig. 1, with the
differences lying in an additional minimization of the spread
of the orthogonalized basis functions and no requirement to
construct a k-dependent Hamiltonian explicitly—this is ob-
tained rather by Fourier interpolation. For systems with
bands which do not possess an intrinsically local character
�sp bands in metals, for example� the Wannierization proce-
dure has some intrinsic difficulties related to �i� providing a
relatively large number of k points to enable significant lo-
calization of the functions and �ii� disentangling such disper-
sive bands from manifolds of different character which they
may easily cross due to their large dispersion. The latter
problem was solved by Souza et al.,17 while the former re-
mains an intrinsic limitation imposed by the physical prop-
erties of the system under study. It is particularly problematic
in spectroscopic studies where large numbers of unoccupied
bands �which are in general dispersive� are needed.

In contrast with Wannier functions, the optimal basis
functions used in Shirley interpolation have no constraint on
their localization. They are simply the result of a diagonal-

ization of the overlap matrix for the entire set of input peri-
odic functions. In this sense, generating the optimal basis
functions is quite automatic and does not suffer from issues
common to most multidimensional minimization methods,
such as trapping in local minima or sensitivity to initial con-
ditions. The resulting functions can, in fact, be quite delocal-
ized and, in general, we have not paid much attention to their
spatial dependence, given that we do not try to exploit it in
anyway. For instance, one could not hope to extract tight-
binding parameters from a set of basis functions which are
infinitely extended. Figure 6 shows a small number of the
optimal basis functions derived for fcc Cu. They are clearly
delocalized, and what look like simple functions for the
larger eigenvalues of the overlap matrix become increasingly
complex for smaller eigenvalues due to the requirements of
orthonormality.

Shirley interpolation is particularly suited to exploration
of metallic band structure, due to the robust automatic nature
of generating the basis and the obviation of disentangling
procedures. Furthermore, one can generate the band structure
with very few initial k points. In fact, we have already seen
that for large supercells the � point is sufficient to generate
bands which accurately reproduce DFT calculations. Wan-
nier interpolation requires more k points to generate accurate
band structure for bands which do not have an intrinsically
localized character. For small �monatomic� primitive cells,
this may not be problematic, but for larger supercells, where
k-point sampling may still be necessary, then there are clear
advantages to using Shirley interpolation.

Finally, it is worth mentioning that a combination of Shir-
ley interpolation with the Wannierization procedure may be
particularly effective for systems with intrinsic electron de-
localization. Provided that one can generate a converged
self-consistent charge density, one might use Shirley interpo-

TABLE I. Timing information per k-point calculation for
graphene supercells of varying planar separation c, when using a
plane-wave DFT code TPW with a basis of NPW plane waves, and
when using Shirley interpolation TS with MS basis functions.

c
�Å�

NPW TPW

�s�
MS TS

�s�

10 21993 191.56 244 0.063

15 32971 220.48 255 0.056

20 43975 234.88 279 0.056

(1) (2) (4)

(36)(6)(5)

(3)

(18)

FIG. 6. �Color online� A subset of the optimal basis functions of fcc Cu, determined using eight input k points �� plus seven images� and
displayed in real space in a 2�2�2 supercell. Copper atom positions are indicated by copper-colored spheres. Outside �inside� of basis
function isosurfaces indicated in purple �green�. Numbers in parentheses indicate the ordering in terms of overlap matrix eigenvalue
magnitude corresponding to the following coverage of the entire space: �1� 7.6%; �2� 7.3%; �3� 6.4%; �4� 6.0%; �5� 5.7%; �6� 5.4%; �18�
1.8%; and �36� 0.78%.
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lation to efficiently generate solutions to the Kohn-Sham
equations at as many k points as desired and from these
construct the necessary overlap matrix elements to begin the
Wannierization procedure. This may prove particularly ad-
vantageous for the interpolation of metallic or high-energy
unoccupied bands in large systems, such as metallic alloys,
conducting polymers, etc.

VII. FUTURE APPLICATIONS

The particular advantages of reducing the dimensions of a
k-dependent Hamiltonian via an optimal basis are clear for
explorations of band structure and spectroscopy. In this sec-
tion, we outline further possibilities for improved algorithms
or improved scaling in both DFT and beyond-DFT ap-
proaches.

Some self-consistent field calculations rely quite heavily
on numerically converged Brillouin zone integrations. For
example, an accurate determination of the Fermi level is vital
to an accurate estimation of the charge density in metallic
systems, and charge transfer at metallic surfaces. For large
system sizes, these calculations can prove prohibitively ex-
pensive, since the overall cost of the calculation scales like
NkN

3, where Nk is the number of k points and N is the num-
ber of basis functions. Even though one can assume that
larger simulation cells reduce the number of required k
points for numerical convergence, this may not be a suffi-
cient to reduce the overall cost significantly. For example,
doubling the system size would lead to scaling of
�Nk /2��2N�3=22�NkN

3�, which is disheartening if Nk /2
1.
Since we have seen now that for large systems one can quite
easily generate accurate band energies and states throughout
the Brillouin zone, one could, in principle, iteratively calcu-
late just the zone-center electronic structure, while using in-
terpolation to converge the Fermi-level and self-consistent
charge density upon which the Kohn-Sham Hamiltonian is
based. This would reduce the overall scaling, removing the
linear dependence on Nk at the expense of an increase in the
overall prefactor associated with generating the optimal basis
and k-dependent Hamiltonian.

For calculating excited-state properties from first prin-
ciples, the combination of the GW approximation29 and
Bethe-Salpeter equation �BSE� �Refs. 30 and 31� has
emerged as an accurate and efficient approach when applied
to crystalline solids, molecules, nanostructures, and surfaces.
This approach is computationally demanding �scaling at least

as N4� and relies heavily on access to detailed Brillouin zone
sampling of the calculated electronic structure. For periodic
systems, a very fine sampling of k space is required to obtain
converged BSE solutions, and interpolation procedures have
already been applied to enable more efficient calculations. In
fact, Shirley has already used this approach to deal with op-
tical and x-ray excitations in solids.3,4 The main bottle neck
in such calculations comes from the need to access the di-
electric matrix at many k points. We hope to apply the Shir-
ley interpolation scheme to improve the scaling of such cal-
culations by representing the dielectric matrix within the
Shirley basis. This will be the subject of future work.

VIII. CONCLUSIONS

We have presented a generalization of the Shirley interpo-
lation method. The advances in our approach include: �1� a
reduction in the number of input electronic-structure calcu-
lations required to construct the optimal basis; �2� the ability
to interpolate over the entire Brillouin zone using just the
zone center as input for systems with large unit cells; and �3�
a generalization of the nonlocal potential which reduces stor-
age requirements and permits the use of both norm-
conserving and ultrasoft pseudopotentials. We provide appli-
cations of this method to sodium, � brass, graphene, and
copper which illustrate its generality and robustness, particu-
larly in treating metals. In this regard, it is competitive with
existing interpolation schemes based on maximally localized
Wannier functions.
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